On an inequality concerning the polar derivative of a polynomial
نویسندگان
چکیده
منابع مشابه
On the polar derivative of a polynomial
For a polynomial p(z) of degree n, having all zeros in |z|< k, k< 1, Dewan et al [K. K. Dewan, N. Singh and A. Mir, Extension of some polynomial inequalities to the polar derivative, J. Math. Anal. Appl. 352 (2009) 807-815] obtained inequality between the polar derivative of p(z) and maximum modulus of p(z). In this paper we improve and extend the above inequality. Our result generalizes certai...
متن کاملextensions of some polynomial inequalities to the polar derivative
توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی
15 صفحه اولOn an inequality concerning the polar derivative of a
In this paper, we present a correct proof of an L p-inequality concerning the polar derivative of a polynomial with restricted zeros. We also extend Zygmund's inequality to the polar derivative of a polynomial.
متن کاملon the polar derivative of a polynomial
for a polynomial p(z) of degree n, having all zeros in |z|< k, k< 1, dewan et al [k. k. dewan, n. singh and a. mir, extension of some polynomial inequalities to the polar derivative, j. math. anal. appl. 352 (2009) 807-815] obtained inequality between the polar derivative of p(z) and maximum modulus of p(z). in this paper we improve and extend the above inequality. our result generalizes certai...
متن کاملInequalities for the polar derivative of a polynomial with $S$-fold zeros at the origin
Let $p(z)$ be a polynomial of degree $n$ and for a complex number $alpha$, let $D_{alpha}p(z)=np(z)+(alpha-z)p'(z)$ denote the polar derivative of the polynomial p(z) with respect to $alpha$. Dewan et al proved that if $p(z)$ has all its zeros in $|z| leq k, (kleq 1),$ with $s$-fold zeros at the origin then for every $alphainmathbb{C}$ with $|alpha|geq k$, begin{align*} max_{|z|=...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings Mathematical Sciences
سال: 2007
ISSN: 0253-4142,0973-7685
DOI: 10.1007/s12044-007-0030-0